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ABSTRACT 
 

The work and results presented in this dissertation concern two complimentary studies that 

are rooted in surface acoustic waves and transducer study.  

Surface acoustic wave devices are utilized in a variety of fields that span biomedical 

applications to radio wave transmitters and receivers. Of interest in this dissertation is the study of 

surface acoustic wave interaction with polydimethylsiloxane. This material, commonly known as 

PDMS, is widely used in the microfluidic field applications in order to create channels for fluid 

flow on the surface of a piezoelectric substrate. The size, and type of PDMS that is created and 

ultimately etched on the surface of the substrate, plays a significant role in its operation, chiefly in 

the insertion loss levels experienced. Here, through finite element analysis, via ANSYS® 15 Finite 

Element Modeling software, the insertion loss levels of varying PDMS sidewall channel 

dimensions, from two to eight millimeters is investigated. The simulation is modeled after 

previously published experimental data, and the results demonstrate a clear increase in insertion 

loss levels with an increase in channel sidewall dimensions. Analysis of the results further show 

that due to the viscoelastic nature of PDMS, there is a non -linear increase of insertion loss as the 

sidewall dimensions thicken. There is a calculated variation of 8.31 decibels between the insertion 

loss created in a microfluidic device with a PDMS channel sidewall thickness of eight millimeters 

verse a thickness of two millimeters. Finally, examination of the results show that insertion loss 

levels in a device are optimized when the PDMS sidewall channels are between two and four 

millimeters.  



www.manaraa.com

vii 
 

The second portion of this dissertation concerns the calibration of an ultrasonic transducer. 

This work is inspired by the need to properly quantify the signal generated by an ultrasonic 

transducer, placed under a static loading condition, that will be used in measuring ultrasonic bone 

conducted frequency perception of human subjects. Ultrasonic perception, classified as perception 

beyond the typical hearing limit of approximately 20 kHz, is a subject of great interest in 

audiology. Among other reasons, ultrasonic signal perception in humans is of interest because the 

mechanism by which either the brain or the ear interprets these signals is not entirely understood. 

Previous studies have utilized ultrasonic transducers in order to study this ultrasonic perception; 

however, the calibration methods taken, were either incomplete or did not properly account for the 

operation conditions of the transducers. A novel transducer calibration method is detailed in this 

dissertation that resolves this issue and provides a reliable means by which the signal that is being 

created can be compared to the perception of human subjects. 
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CHAPTER 1. INTRODUCTION 
 

The main objectives of this dissertation are to create an in-depth simulation study of surface 

acoustic wave (SAWs) transducers integrated with microfluidic channels, and the creation of a 

novel technique for the calibration of preloaded acoustic transducers.  

Surface acoustic waves are mechanical wave motions which are generated on, and 

propagate elastically on, the surface of a substrate or medium. The energy of these mechanical 

waves declines exponentially as they penetrate into the depth of the substrate they are propagating 

on; this is characterized by a loss in wave amplitude. SAWs find their roots in the discovery of 

Rayleigh waves by British physicist Lord Rayleigh, John William Strut, through his mathematical 

theory of Rayleigh Scattering [1]. After their discovery, SAWs found many fields of application 

such as non-destructive testing, through the investigation of faults in a materials surface, 

biochemical sensors, and Radio Frequency communications. More recently, SAWs have found an 

increase in application in the field of microfluidics, this is due to two primary reasons. First, energy 

from SAW waves is efficiently transferred into the bulk of a liquid placed in contact with them. 

Second, SAWs create larger magnitude of force transfer than other methods in the microfluidic 

field such as magnetism, electrowetting, and thermo capillarity[2]. In this dissertation, SAWs are 

simulated on a lithium niobate, LiNbO3, substrate by taking advantage of the piezoelectric effect. 

The piezoelectric effect is the creation of an electrical charge in certain materials when 

they are subjected to mechanical stress. One of the most unique aspects of the piezoelectric effect 

is that it is completely reversible. When the same material is subjected to an electric charge, the 
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material will undergo a mechanical stress. This effect is caused by the manipulation of the atomic 

structure of piezo electric materials. In their unaltered state, piezoelectric materials have very 

finely internally balance charges in their crystalline structure [3]. When a voltage is induced into 

a piezo electric material, an electrical pressure is induced on the structure of the material, which 

will rearrange its internal structure to balance the charges. When the voltage is removed, the crystal 

then returns to its unaltered state. This effect is utilized in order to easily and repeatedly create 

surface acoustic waves in microfluidic devices, through the use of interdigital transducers, IDTs. 

These IDTs have comb shaped interlocking fingers, and  are used in sets of two. The first set of 

the IDTs are used for the input; this set is responsible for transmitting any electric voltage into a 

piezoelectric substance to create SAWs. The second set of IDTs, the “receiver” set, is responsible 

for reading how much voltage is created in the piezoelectric devices [4]. The ratio of this input to 

output voltage is used to calculate the insertion loss of a device. The insertion loss is important for 

finding the fundamental frequency of the device being used, which defines the optimal operating 

frequency [5]. This dissertation contains a simulation study that details how the insertion loss of a 

device is effected by altering elements of its design.  

The second focus of this dissertation contains a novel method for calibration of an 

ultrasonic transducer that is placed under a static load. Currently a large industry exists which 

focuses on calibration of transducers for general use; however, for specialized transducer operating 

characteristics there is not always a readily available option. Furthermore, for the specific use of 

ultrasonic bone conduction, there does not exist an accurate method of transducer calibration. 

Calibration of any signal producing device is a key component for both properly characterizing a 

signal being created, and analyzing its effects. The method detailed in this dissertation centers on 

identifying the signal output of an ultrasonic transducer operating between 20 kHz to 80 kHz.  
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1.1 Motivation 

As computer processing power increases, the capabilities of computer simulation accuracy 

and detail rise alongside it [6]. This makes simulation a very feasible alternative to actual 

fabrication and experimentation of microfluidic devices in instances where time, budget, or even 

capability of fabrication of a device are constrained. A further advantage of simulation is that it 

affords a user the ability to make small adjustments in their designs to optimize a device before its 

fabrication. Time will always be a constraint, even in cases where budget would not be considered 

an issue for realizing devices. This dissertation will detail the steps utilized in creating an in depth 

and accurate simulation of the insertion loss of a microfluidic device. Furthermore, these 

simulation results will be compared to published experimental data. 

The motivation behind the second focus of this dissertation is the need for an accurate 

calibration method for a transducer that will be used for ultrasonic bone conduction. Ultrasonic 

bone conduction is an application that has been studied in audiology as far back as 1963 [7]. 

Calibration for this type of application is extremely important, as it is intended to be used as a 

reference for testing with patient participants. Although the methods for calibration described in 

this dissertation were created for an ultrasonic bone conductor, they can be utilized in other 

specialized situations where more traditional calibration methods are not available. 

1.2 Dissertation Organization 

This dissertation is organized in the following manner.  

Chapter 2 contains a theoretical background that will lay the basis for work completed. The 

theoretical background will focus on the fundamental working principles of surface acoustic 

waves, insertion loss, and piezoelectricity. After establishing this background, this chapter will 
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cover in detail important aspects of simulation, including: meshing, material properties, boundary 

conditions, and actuating loads.  

Chapter 3 will discuss the previous work that has been done in ultrasonic bone calibration. 

This will establish a clear reason for the necessity of a new method to accurately calibrate bone 

conducting transducers. This chapter will also discuss the biomechanics of the hearing process. 

Chapter 4 will contain the novel calibration method used in this dissertation. In specific, it 

will cover: the transducers that were selected for initial testing, the equipment used in the 

calibration procedure, and the calibration rig created for the testing procedure. 

Chapter 5 will detail the specifics chosen for each aspect of the simulation completed for 

this dissertation. The simulation focuses on insertion loss variation caused by varying PDMS 

channel dimensions bonded on top of a piezoelectric substrate, lithium niobate, LiNbO3 in this 

study, and a comparison with previously published experimental results.  

Finally, chapter 6 is a discussion of future work that can be completed from this 

dissertation. It will specify areas of the simulation that can be further studied in detail. This chapter 

will also contain ideas on how the calibration methods for ultrasonic preloaded transducers can 

still be improved.  
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CHAPTER 2. SAW THEORY AND FINITE ELEMENT ANALYSIS 
 

2.1 Piezoelectric Effect 

Piezoelectricity was discovered by the Curie brothers in 1880 through their demonstration 

that quartz could generate a charge when mechanically deformed [3]. This effect of creating an 

electrical charge on a crystalline structure by subjecting it to a mechanical deformation is known 

as the piezoelectric effect. Conversely the piezoelectric effect causes crystalline materials to 

undergo a deformation when subjected to a voltage. Not all crystals are piezoelectric, only 

materials that are non-centrosymmetric can exhibit the piezoelectric effect [8]. Non-

centrosymmetric crystals have no inversion center point in their structure, which causes them to 

have anisotropic material and electrical properties [9]. Figure 2.1 Piezoelectric Effect Diagram 

provides a depiction of what causes the piezoelectric effect in non-centrosymmetric crystals. 

 

Figure 2.1 Piezoelectric Effect Diagram 
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Figure 2.1 Piezoelectric Effect Diagram illustrates that while under no stress, the positively 

and negatively charged atoms of the structure are balanced; however, when placed under 

deformation the structure is polarized. In the tension case, positive atoms are moved close to the 

material’s top surface creating a positive charge, and negative atoms are moved towards the 

material’s bottom surface which creates a negative charge. The opposite polarization is created in 

the material when it is placed under compression. This figure also helps to demonstrate that 

piezoelectric materials are typically crystals with ionic bonds [8]. 

2.2 Piezoelectric Mathematical Background 

 

Figure 2.2 Partial Heckmann Diagram 

The partial Heckmann diagram in Figure 2.2 illustrates the relationship between 

mechanical and electrical properties of piezoelectric materials. The two types of piezoelectric 

effects are labeled as the direct piezo electric effect, and the converse piezoelectric effect. The 

direct piezoelectric effect is defined by the relationship between mechanical stress and electrical 
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polarization of the material, and the converse piezoelectric effect is defined by the relationship 

between mechanical strain and an applied electrical field [10]. The equations of both types of the 

piezoelectric effect are related through the principle piezoelectric coefficient, d. These equations 

are as follows [10]. 

 𝑃 = 𝑑𝑋 (1)

 𝑥 = 𝑑𝐸 (2)

 In the direct piezoelectric effect equation, (1), P accounts for the polarization and X accounts for 

the stress. In the indirect piezoelectric effect equation, (2), x accounts for the strain and E accounts 

for the electric field. Since piezoelectric materials are non-centrosymmetric, these equations only 

describe the general effects, and are transformed into (3) and (4), below, to account for their 

anisotropy.  

 𝑃௝ = 𝑑௜௝௞𝑋௜௞ (3)  

 𝑥௜௝ = 𝑑௜௝௞𝐸௞ (4)

In these equations, polarization (P) and electrical field are vectors (E), stress (X) and strain (x) are 

second rank tensors, and the piezoelectric coefficient (d) is a third rank tensor [10]. 

Equations (3) and (4) apply to special cases where only stress and strain are present. In 

order to account for the effects of piezoelectricity on a structure, (5)and (6) for stress and strain in 

non-piezoelectric structures are introduced. 

 𝜎௜ = 𝐶௜௝𝜀௝ (5)

 𝜀௜ = 𝑆௜௝𝜎௝ (6)

In these equations, C represents the inverse stiffness matrix and S represents the compliance 

matrix. Combining these equations with (3) and (4) for piezoelectric structures, yields the 

equations (7) and (8), as seen below. 
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 𝜀௜ = 𝑆ா𝜎௝ + 𝑑௜௝௞𝐸௝ (7)

 𝜎௜ = 𝐶ா𝜀௝ − 𝑒௜௝௞𝐸௝ (8)

These are the most common representation of the piezoelectric equations. The variables 

𝑑௜௝௞ and 𝑒௜௝௞  are different for each piezoelectric material and cut orientation. Specifics of the 

piezoelectric material studied in this dissertation, lithium niobate, and its cut orientation are 

discussed later in this dissertation. 

2.3 Surface Acoustic Waves 

Acoustic waves in solids are the result of the superposition of elastic particle movement 

[11]. In this dissertation, the type of waves that are studied are surface acoustic waves, also known 

as SAWs. In large part, surface acoustic waves are separated into longitudinal waves and shear 

waves. Figure 2.3 below displays a two-dimensional representation of these two types of waves. 

 

Figure 2.3 Two-Dimensional Representation of Longitudinal and Shear Waves 

In Figure 2.3 Two-Dimensional Representation of Longitudinal and Shear Waves, nodal 

points at the intersection of horizontal and vertical lines in the grid represent individual particle 

positions. Figure 2.3 (a) depicts longitudinal wave movement. The nodal points oscillate from left 

to right with the propagation direction of the surface waves. Figure 2.3 (b) depicts shear wave 

action. The wave propagates from left to right, the same direction as the longitudinal wave; 
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however, the individual particles move up and down, in the normal direction of the wave’s 

propagation.  

The apparent wave motion created in these two classes of waves is the result of individual 

particle motion. When the superposition of particle motion is observed, this creates a visual effect 

of longitudinal and shear wave propagation. These two basic particle motions are combined in 

waves to create many different types of SAWs. Two of the most common types are Rayleigh waves 

and Love waves. These waves are distinguished from one another by their particle movement in 

relation to wave propagation direction [12]. They are depicted in Figure 2.4. 

 

Figure 2.4 Three Dimensional SAW Waves (from [13, 14], public domain images) 

The Love wave shown in Figure 2.4 is the result of the interaction of a multitude of pure 

shear type particle movements, while the Rayleigh wave shown is caused by the interaction of 

shear and longitudinal particle motions. 
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Pure shear waves present key advantages over Rayleigh waves in microfluidic applications. 

Rayleigh waves experience a higher level of attenuation when they travel across the sensing 

surface of a device. This is caused by energy loss when the wave penetrates into a fluid that is 

placed into contact with the substrate [15]. Alternatively, shear waves move normal to the surface 

of a fluid. This causes lower attenuation across the surface of a piezo electric substrate, and makes 

shear waves ideal for the type of microfluidic application that is studied. 

2.4 Microfluidic Device Design 

Microfluidic devices utilize the properties of surface acoustic waves through the use of 

interdigital transducers, commonly abbreviated as IDTs. The concept of using IDTs to both create 

and detect SAW signals was first proposed by R.M. White and F.W. Voltmer in 1965 [16]. Before 

the use of IDTs was a common practice, shear or compressive transducers were coupled to the face 

of the piezoelectric substrate to create waves. IDTs differ in that they are conductive material that 

is deposited directly onto the surface of a piezo electric substrate.  

 

Figure 2.5 Basic SAW Device Components 
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Figure 2.5 is a depiction of a typical SAW device. The elements involved in this device are 

the piezo electric substrate, the input IDT, and the output IDT, both are deposited on top of the 

substrate. The substrate between the input and output IDTs can be used as a sensor surface or for 

actuating motion in a fluid. A voltage is applied to the input IDT, which subsequently creates a 

mechanical strain on the piezoelectric substrate via the piezoelectric effect. IDTs can be made of 

different types of metals; however, in this dissertation chrome IDTs are used [17]. Pulsing a 

voltage to the input IDTs creates waves that travel across the surface of the substrate. When the 

waves reach the set of output IDTs, the electrical charge created by their motion is converted back 

to a voltage.  The amount of electrical energy that is converted to mechanical energy is calculated 

using the electromechanical coupling coefficient kt which is given by: 

 𝑘 =
𝑑

√𝑠ா𝜀்
 (9)

where d is the piezoelectric strain coefficient, s is the material compliance, and ɛ is the dielectric 

coefficient. These properties vary as a function of the piezoelectric substrate utilized. 

The acoustic wavelength of a SAW device is a function of the spacing between two 

consecutive IDT fingers. The spacing between two fingers on opposite busses is equal to ¼ of the 

desired wavelength, 𝜆. The spacing between two fingers of one bus is equal to one wavelength. In 

order to achieve this spacing, finger widths are also kept as one quarter of the desired operation. 

The operating frequency is calculated by equation (10), 

 𝑓 =
𝑉௦௨௕௦௧௥௔௧௘

𝜆
 (10)

where 𝑓 is the frequency calculated, 𝑉௦௨௕௦௧௥௔௧௘ is the velocity of propagation of waves through a 

given piezoelectric substrate, and 𝜆 is the wavelength chosen by IDT spacing. Since piezoelectric 
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materials have anisotropic properties, their operational propagation velocity is also effected by 

their crystal cut orientation. 

SAW devices are furthermore dependent on the thickness of the IDT deposited on their 

surface. Thicker IDT fingers offer an excellent electrical contact with lower resistance, while 

thinner IDT fingers cause large circuit loading and insertion loss because of the higher resistances. 

If the IDT fingers are too thick; however, the impedance of transmission of acoustic waves 

increases, resulting in a reduction of the operating frequency due to a decrease in SAW velocity 

as the wave passes under the IDT fingers [18]. An IDT thickness of deposited metal of 500–2000 

angstroms is ideal.[19] 

Acoustic aperture is defined as the length of overlap of the interlocking fingers. Longer 

acoustic apertures in relation to acoustic wavelength lead to more focused wave travel. The 

minimum length of acoustic aperture that ensures uniform wave front travelling across a 

piezoelectric substrate is 30 times the designed wavelength.[20] 

2.5 Finite Element Analysis 

The number of factors that affect the operation of a microfluidic devices, as discussed in 

chapter 2.4, make their design and fabrication a costly and time expensive endeavor. In this 

dissertation, Finite Element Analysis (FEA) was used in the optimization of the microfluidic 

devices, using a commercially available software, ANSYS®. 

Finite element analysis is a substantial and growing industry. In the United States alone, 

over one billion dollars is spent each year purchasing FEA software and the computer processing 

necessary to run it [21]. One of the applications of finite element analysis is the utilization of 

numerical method techniques to calculate the response of a complicated geometry to a stimulus 

[22]. These complicated geometries are broken down into a number of finite elements which 
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connect with each other through nodes [21]. There are several processes that are crucial in FEA 

for determining the accuracy and reliability of calculated results such as meshing, time 

discretization, and analysis method [23].  

Key components in creating an ideal mesh for a finite element model are mesh density and 

mesh element type. The accuracy of solution increases with mesh density; however, too high mesh 

density has disadvantages. First, high mesh density greatly increases computational time, 

especially a transient analysis, where each mesh element node is calculated for each time step. 

Second, increases in mesh density have diminishing returns in solution accuracy, particularly if 

computation time is considered. Third, high mesh densities can artificially create stress 

singularities at points of stress concentration. As a mesh is refined near stress concentration points, 

the area of each individual element becomes smaller, artificially increasing the stress calculated 

[22]. For acoustic simulations, the recommended number of elements per wavelength is between 

six and ten [24].  

A second factor in defining an ideal mesh is choosing the correct element type for a given 

finite element model. There are one-dimensional, two-dimensional, and three-dimensional element 

types; however, here only three-dimensional mesh elements are utilized. The two main 

subcategories of three-dimensional meshing use tetrahedral and/or hexahedral elements. Standard 

tetrahedral elements have four node points and standard hexahedral elements have eight node 

points, one at each element vertex. We use mostly hexahedral elements because they are easier to 

modify than tetrahedral elements; furthermore, in simple geometries, hexahedral elements allow 

for consistent meshing throughout a model [25].  

In FEA, mesh quality is further analyzed through mesh quality metrics. Element quality, 

aspect ratio, skewness, and orthogonal quality are major metrics that help determine whether a 
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generated mesh is suitable for computational analysis. Element quality for three dimensional 

elements is calculated through: 

 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝐶(
𝑉𝑜𝑙𝑢𝑚𝑒

ඥ[∑ 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎଶ]ଷ
) (11)

where C is a constant that depends on the type of element used. These values are found in Table 

2.1. The element quality calculation helps determine the variation of an element from its ideal 

equilateral shape. In calculating element quality, the volume a created three-dimensional mesh 

element is compared to the sum of its edge sizes and given as a dimensionless value. 

Table 2.1 Values of C for Element Quality Calculation [26] 

Element Value of C 

Triangle 6.92820323 

Quadrangle 4.0 

Tetrahedron 124.70765802 

Hexagon 41.56921938 

Wedge 62.35382905 

Pyramid 96 

 

Aspect ratio is defined as the length of the longest side of an element divided by its shortest 

side. The value of skewness shows how close an element is to its ideal shape, where a value of 0 

is perfect. Skewness can be calculated two different ways. The first method is called equilateral-

volume-based skewness 

 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = (
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝑒𝑙𝑙 𝑆𝑖𝑧𝑒 − 𝐶𝑒𝑙𝑙 𝑆𝑖𝑧𝑒

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝑒𝑙𝑙 𝑆𝑖𝑧𝑒
) (12)
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The optimal cell size for an individual element is an equilateral cell with the same 

circumradius as the cell size. The second skewness equation is the normalized-angular-skewness 

equation, (13) [27]. 

 

 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚[൬
𝜃௠௔௫ − 𝜃௘

180 − 𝜃௘
൰ , ൬

𝜃௘ − 𝜃௠௜௡

𝜃௘
൰] (13)

where θmax is the maximum angle found in an element, θe angle of an equilateral element, and θmin 

is the smallest angle of the element. Each of these angles is taken from individual faces of the 

elements [26]. 

Orthogonal quality is a value that ranges from zero to one, one as perfect. Figure 2.6, shows 

the vectors used to calculate element orthogonal quality [26]. 

 

Figure 2.6 Orthogonal Quality Vectors of a Three-Dimensional Element  
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For an individual element, the minimum value of equations (14) and (15) is used as its 

orthogonal quality.  

 𝑂𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝐴ప ∙ሬሬሬሬሬሬ⃗ 𝑓ప

ሬሬ⃗

|𝐴௜| ∙ |𝑓௜|
 (14)

 𝑂𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝐴ప ∙ሬሬሬሬሬሬ⃗ 𝑐పሬሬ⃗

|𝐴௜| ∙ |𝑐௜|
 (15)

where the c vectors originate from the centroid of an element, the f vectors originate from the 

centroid of an individual face, and the A vectors are the face normal vectors.  

Time discretization in finite element analysis involves choosing the proper time step 

interval for a transient analysis. The time step determines the duration of each load step and the 

total number of time steps determine the overall duration. Time steps should be such that the 

resulting frequency of the analysis is at least twice the frequency studied, this is known as the 

Nyquist sampling theorem [28]. 

In this study transient response analyses is used. Transient analysis of acoustical processes 

is carried out by solving: 

 [𝑀]{𝑢̈} + [𝐶]{𝑢̇} + [𝐾]{𝑢} = {𝑓(𝑡)} (16)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, {𝑢̈} is the 

nodal acceleration vector, {𝑢̇} is the nodal velocity vector, {𝑢} is the nodal displacement vector, 

and {𝑓(𝑡)} is the load vector [22]. Although this is the basic equation solved in transient analysis, 

the more equations that are involved simulation of a piezoelectric event are discussed in detail in 

a later chapter.  
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CHAPTER 3. ULTRASONIC TRANSDUCER CALIBRATION 
 

The second focus of this dissertation is the creation of a novel method for calibrating 

preloaded transducers. The transducers in this study are calibrated for bone conduction testing in 

the ultrasonic human hearing range; however, the method presented in this dissertation has utility 

outside of this specific purpose, such as in micro crack detection.  

3.1 Biomechanics of Hearing 

The audible range of human hearing for air conducted frequencies is commonly classified 

between 20 and 20,000 Hz (20 kHz), and any frequency greater than this is considered ultrasonic. 

The audible frequency range is also known as the sonic hearing range [29]. Studies dated as far 

back as 1948 by Vladmir Gavreau and 1950 by R.J. Pumphrey, proposed that humans have some 

level of ultrasonic frequency detection through bone conduction [30, 31]. Bone conduction refers 

to a different method of frequency perception than the normal method of sound wave captured by 

the human ear. The sonic frequency hearing process is explained below. 

As depicted in Figure 3.1, there are three sections of the human ear. The first section is 

called the external ear, and consists of the pinna and the auditory canal. The pinna, also known as 

the auricle, is the visible cartilage portion of the ear visible outside of the skull. It is meant to funnel 

sound waves into the ear auditory canal. The pinna is shaped in a way that is meant to favor sounds 

that correspond with the orientation of the head, which helps a person know the location of the 

sound course [32]. The auditory canal, also known as the external auditory meatus, transmits sound 

waves captured by the pinna to the middle ear.  
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Figure 3.1 Human Ear Anatomy [33] 

The second section is the middle ear. The middle ear is an impedance matching mechanism 

that creates a 30 to 33 dB gain between the air sound pressure waves captured by the external ear 

and the fluid contained in the inner ear. It consists of: the tympanic membrane, the malleus, the 

incus, the stapes, and the tympanic cavity. The tympanic membrane is stimulated by sound 

pressure waves that are captured and funneled by the external ear. Sound pressure waves cause the 

membrane to oscillate back and forth and this causes motion in the ossicular chain. Ossicles is the 

collective name of the three bones in the ossicular chain: the malleus, incus, and the stapes. These 

bones are the smallest in the body and are also respectively known as the hammer, anvil, and 

stirrup. They act as a three-bar mechanism responsible for converting the oscillations of the 

tympanic membrane into a stimulus that is sensed by the fluid of the inner ear. The tympanic cavity 

is the air-filled cavity containing the ossicles. This cavity is pressurized and is responsible for 

maintaining equalized pressure in the head. 
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There are three mechanisms in the middle ear that account for impedance matching and 

decibel gain. The first is the tip of the malleus that touches the tympanic membrane. This portion 

of the malleus is the manubrium. When the curved membrane vibrates from a sound pressure 

stimulus, the portion of the manubrium in contact with the membrane vibrates with less amplitude, 

but greater force than the surrounding membrane. This creates a ~6 dB gain. The surface area of 

the face of the stapes in direct contact with the inner ear is, on average, 18 times smaller than the 

effective surface area of the tympanic membrane. The reduction in area creates a ~25 dB gain. 

Finally, the lever action of the ossicular chain creates a ~2 dB gain. 

 

Figure 3.2 The Inner Ear Detail [34] 

Figure 3.2 details the third section of the ear, the inner ear. The inner ear is composed of 

the bony labyrinth and the membranous labyrinth. These two labyrinths contain the vestibular 
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system and the cochlea, and are filled with perilymph and endolymph fluid [35]. The bony 

labyrinth is filled with perilymph fluid, while endolymph fluid fills the membranous labyrinth. 

The vestibular system of the inner ear is not part of the hearing process, but rather, is used 

for balance. It contains the utricle, the saccule, and three semicircular canals. These canals are 

responsible for compensating for rotational movement. When the body rotates, this inner ear fluid 

rotates as well, and this creates a signal sent to the brain. Both the left and right side vestibular 

systems in the inner ear work simultaneously. The other two components of the vestibular system, 

the utricle and the saccule account for linear movements. Specifically, the utricle accounts for two-

dimensional movement made on horizontal plane that intersects the skull, and the saccule accounts 

for two-dimensional movement made orthogonally to this plane [22]. 

The portion of the inner ear associated with sonic hearing is the cochlea. The cochlea is a 

snail shell shaped bony portion of the inner ear, and a cross section of the cochlea is depicted in 

Figure 3.3. This cross section clearly shows the complexity of the cochlear process. The membrane 

between the inner and middle ear that is in direct contact with the stapes is the oval window. 

Motion of the stapes in response to an acoustic stimulus leads to vibration of the oval window. The 

cochlea is comprised of three fluid filled chambers. One chamber (scala vestibuli) is bounded by 

the oval window and one end and the helicotrema at the other end. The second chamber (scala 

tympani) is bounded by the helicotrema at one end and the round window at the either end. Thus, 

the helicotrema allows the perilymph fluid in to fill both cavities. When the stapes vibrates, it leads 

to vibration of the oval window which produces vibration in the perilymph fluid filling the scala 

vestibuli and scala tympani.  
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Figure 3.3 Cross Section of the Cochlea [33] 

The vibration passes through the perilymph fluid in the scala vestibuli and the scala 

tympani, and create oscillations in both Reissner’s membrane and the basilar membrane. These 

membranes separate the scala vestibuli and the scala tympani from the third chamber in the 

cochlea, the cochlear duct. As opposed to the other two chambers of the cochlea, the cochlear duct 

is filled with endolymph. The organ of corti, placed on top of the basilar membrane, vibrates in 

response to the oscillations created. The organ of corti is responsible for sending nerve impulses 

from the cochlea to the brain which are interpreted as sounds, via the cochlear nerve. These nerve 

impulses are created by bending of hair cells in organ of corti. The tips of these hair cells are 

embedded in the tectorial membrane and are bent from vibration of the basilar membrane. The 

basilar membrane itself is tonotopic meaning that the entire membrane does not vibrate 

simultaneously, this is due to varying stiffness. The membrane has higher stiffness close to the 

oval window and lower stiffness at its apex. The higher stiffness portion of the membrane perceives 

the upper end of sonic hearing, closer to 20 kHz, and the lower stiffness portion perceives the 

lower end of hearing, 20 Hz signals.  
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3.2 Bone Conduction Perception and Previous Studies  

Typical hearing is completed by the process presented in the previous section; however, 

bone conduction provides a modified method of sound perception. A signal from a bone conducted 

vibration causes both the cochlea and the bone surrounding the inner ear to vibrate. By vibrating 

the cochlea directly, the external and middle ear are not utilized since there is no sound pressure 

wave that needs to be captured and converted into a mechanical stimulation. This occurs naturally, 

especially for body-generated sounds such as speech, and for loud sounds in the environment.  

Bone conduction for body-generated sounds has relatively low impedance, and is efficiently 

transmitted to the fluid-filled cochlea. External acoustics stimulation is transmitted more 

efficiently through the ear canal and middle ear than through vibrations of the skull or other bones 

connected to the skull.  

Conventional understanding dictates that the limit of sonic hearing is around 20 kHz; 

however, studies have shown that, through bone conduction, ultrasonic hearing is possible above 

20 kHz. Although this is not entirely understood, several theories have arisen to explain this 

phenomenon. In 1963, Daeff and Knox theorized that the bone conduction when interacting with 

blood, tissue, and musculature resulted in ultrasonic resonance in the (peripheral, central, or both) 

auditory system. Further, in a 2003 study, Lenhardt hypothesized that ultrasound conducted 

through the bone could resonate in the skull generating signals that can be interpreted through the 

cochlea [36]. Another theory by Nishimura concluded that the hair cells of the basilar membrane 

vibrated directly from a bone conducted signal causing ultrasonic perception [37]. Although there 

is not a definitive answer, most theories conclude that if ultrasonic hearing is somehow captured 

by the normal auditory system, it is because of direct resonance of the inner ear. These theories 

are based on the observation that, when a human senses an ultrasonic signal, it is perceived as a 
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louder sound than the highest sonic frequency a person can hear [38]. As the frequency increases, 

the subject senses the same sound frequency, only with changes in loudness perception [29]. For 

instance, if a subject’s sonic hearing threshold is 20 kHz, when they perceive an ultrasonic signal 

it will sound the same as the 20 kHz signal, but with a higher amplitude.  

An alternate explanation for ultrasonic hearing states that the vestibular system, rather than 

the cochlea, interprets these signals. In 1991, Lenhardt conducted a study that included both elderly 

hearing impaired and profoundly deaf subjects, between the ages of 50 and 82. The study compared 

the ultrasonic frequency perception of this group and a group between the ages of 20 and 29 years 

old with no hearing loss. The results showed that the ultrasonic hearing thresholds of these groups 

were similar, regardless of hearing impairment in the sonic hearing range. The experiment further 

tested the ability of these groups to understand words when using ultrasonic frequencies. The 

results showed that test subjects could successfully identify the word transmitted at ultrasonic 

frequencies between 45 and 70 percent of the time. This study lead Lenhardt to hypothesize that 

ultrasonic frequency recognition could also be the result of secondary signal generation from the 

vestibular system to the brain. 

3.3 Previous Audiological Bone Conduction Transducer Calibrations  

A necessary step before testing any type of bone vibrator on human test subjects is 

threshold calibration. This process is used to measure hearing threshold levels against reference 

threshold levels in order to keep testing procedures consistent; however, there are no threshold 

standards for ultrasonic bone conduction [36]. Thresholds are defined as the softest sound that are 

heard by a subject. Thresholds for detecting bone-conducted stimuli are usually measured for a 

series of different tonal frequencies and are expressed in terms of decibels either in units of sound 

pressure (i.e, micro Pascals) generated in a water filled cavity containing the bone conduction 
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transducer or force measured via accelerometer. To date, there are no standards for calibrating 

ultrasonic stimulation.  

In an early bone conduction test, J. F. Corso calibrated transducers measuring their sound 

pressure levels [7]. The transducer tips were placed in a three-cubic foot water tank, and a 

frequency response curve was created for the range of 5 kHz to 100 kHz. The frequency response 

was captured in terms of sound pressure level. The water tank used in his study mimics the 

impedance characteristics of bone and tissue.  

A similar calibration procedure was performed by Koizumi [39]. In Koizumi’s study, a 

hydrophone was placed in a tank of degassed water. This tank recorded acoustic outputs and was 

placed 100 mm away from the end of an ultrasonic transducer. The transducer created 500 

millisecond long duration 30 kHz signals. In this study, the water tank was used to ensure that the 

ultrasonic transducer was not creating any audible air conducted sound. An audible sound would 

affect threshold measurement for bone conducted ultrasound since it could create confusion, 

making it more difficult for a test subject to correctly identify an ultrasonic bone vibration. 

Lenhardt carried out a bone conduction calibration in 2002 that utilized an accelerometer. 

In this study, a Brüel & Kjær 4374 accelerometer was placed between a human head and a Radioear 

B-71 bone vibrator. The bone vibrator and accelerometer were held in place on the head with a 

prestressed metal head band. The calibrations used in this study were performed only at 6 kHz, 

and were used as reference levels for a second bone vibrator device used for tinnitus therapy. The 

second bone vibrator was calibrated in the sonic range, from 6 kHz to 20 kHz using the same 

equipment and methods. [36]. 

In each of these calibration procedures, there is an oversight that does not address the 

operation conditions of the transducer. In two of these studies, the transducers were calibrated by 
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sounds pressure level; however, what is of interest is the vibration created by the transducers when 

placed in contact with a person’s skull. If the transducers were utilized for transmission of air 

conducted ultrasonic signals, these calibrations would be sufficient, but sound pressure levels 

should not be the focus of bone conducted signal calibration. The calibration methodology 

employed by Lenhardt came closer to classifying the bone conducted signal; however, it was 

completed only in the sonic range of hearing, and the accelerometer utilized was fixed at both 

ends, which may have affected the calibration results. For these reasons, the methodology 

presented in Chapter 4 was created. 
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CHAPTER 4. ULTRASONIC TRANSDUCER CALIBRATION 
 

This chapter describes the procedures developed for the calibration of an ultrasonic 

transducer. Previous studies, specified in CHAPTER 3, either have not focused on ultrasonic 

calibration, or have not accounted for the operation conditions of the accelerometer. Although this 

chapter describes calibration of ultrasonic bone conductors, these procedures can be adapted for 

calibration of any transducer that will have a static load applied to its actuating face. 

4.1 Calibration Procedure 

Our area of interest for ultrasonic characterization is the interval from 20 kHz to 80 kHz. 

After a comprehensive search and characterization of several transducers, transducer model 

SMUTF40FTR15B made by Steiner and Martins Inc in Doral, Florida was selected to be optimum 

for our ultrasonic bone conduction studies and calibrated in detail. This transducer has a reported 

central operating frequency of 40 kHz. 

The calibration of this transducer was comprised of two separate steps. In the first step, the 

free response of the transducer was recorded; in the second step, the response of the transducer 

under a static applied load was recorded. The free response of the transducer is the ultrasonic 

frequency response characterization with an accelerometer, but with no static load applied. To 

calibrate the free response of the transducer, the testing apparatus depicted in Figure 4.1 Schematic 

Diagram of Calibration Set up for Unloaded Transduceris utilized. The results of this unloaded 

transducer response were recorded to compare the variation created in the transducer’s operation 

when a static load is applied to its operating face.  
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Figure 4.1 Schematic Diagram of Calibration Set up for Unloaded Transducer 

 

Figure 4.2 CAD Model of Custom Designed ABS Plastic Transducer Casing 

In Figure 4.1 the waveform generator, Agilent model 33210A, was connected via BNC to 

SMA cable to the transducer. The transducer was placed inside of a 3-D printed acrylonitrile 

butadiene styrene (ABS) plastic, seen in Figure 4.2. This casing was modeled after the 

commercially available RadioEar B71 bone vibrator casing. A PCB PIEZOTRONICS miniature 
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teardrop accelerometer was placed on the exposed actuating face of the transducer, and was 

coupled with a very thin layer of Sonotech SOUNDSAFE ultrasonic coupling gel. The miniature 

accelerometer was then connected to a PCB model 480C02 ICP sensor signal conditioner. Finally, 

the output of the signal conditioner was connected to an Agilent Technologies model DSP-X 

3042A digital storage oscilloscope. The calibration was carried out applying a 500 mVpp [millivolt 

peak to peak] signal from the waveform generator to the transducer for frequencies ranging from 

20 kHz to 103 kHz. The frequency was increased in steps of 1 kHz, adjusting the signal amplitude 

after each response was recorded. The calibration exceeded the desired range of 80 kHz to acquire 

a more complete frequency response curve of the transducer. Figure 4.3 Unloaded Frequency 

Response Curves of Transduceris the calibration curve of the free-response of the transducer. The 

figure’s x-axis is the frequencies applied to the transducer by the waveform generator, and its y-

axis represents the relative decibel voltage drop at each individual frequency. 

 

Figure 4.3 Unloaded Frequency Response Curves of Transducer 
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The second half of the calibration procedure was performed to obtain the response curve 

of the transducer while placed under a static load. A common method of bone conduction 

calibration is the use of an artificial mastoid, such as the Bruel and Kjaer model 4930. The artificial 

mastoid is meant to simulate the impedance characteristics of the human head, and translates 

mechanical vibrations from bone oscillators into an electrical charge by thin piezo electric disks. 

This charge is converted into a voltage and then into a force that is in dB using equation (17). 

 𝐹ௗ஻ = 20 logଵ଴ ൬
𝐹௠௘௔௦௨௥௘ௗ

𝐹௢
൰ (17)

A key characteristic in the calibration method of the model 4930 artificial mastoids is 

applying a constant 5.4 N force to the bone oscillator. This force is applied via a weight. The 

limitation of existing methodology for calibration of bone vibrators is that artificial mastoids are 

only meant to operate in the sonic hearing range. The human hearing range reaches approximately 

20 kHz, because of this there is typically no need to calibrate bone oscillators into the ultrasonic 

range. To characterize the effects of ultrasonic signal transmission, a new method of calibration 

had to be developed. The calibration method depicted in Figure 4.4 Schematic Diagram 

Calibration Set up for Loaded Transducerwas created to address this limitation: This method 

expands upon the basic calibration of the unloaded transducer through the addition of a regulated 

static force. This force is monitored by a Wheatstone bridge type force sensor. This force sensor 

utilizes an array of resistors, which have a constant direct current voltage applied to them. When 

there is no load applied to the sensor, the resistors divide the voltage evenly; however, when the 

resistors are bent in response to a force applied to the sensor, the resistors compress, or are placed 

in tension, which effects the voltage division. This variation in voltage division is then used to 

calculate the amount of load placed on the sensor.  



www.manaraa.com

30 
 

 

Figure 4.4 Schematic Diagram Calibration Set up for Loaded Transducer 

This calibration method requires a stabilization rig, a force sensor, a constant voltage 

supply, a digital multimeter, and two thin steel sheet metal plate. In this methodology, a sheet 

metal plate was used in the place of a bulkier weight in order to minimize the distance between the 

transducer and the accelerometer meant to characterize its frequency response. When a bulkier 

weight was used to apply the static load, the accelerometer was unable to capture any response 

information when the transducer was actuated. The amount of clamping force applied from the 

sheet metal plate to the transducer was regulated by tightening and loosening the four nuts located 

on the corners of the stabilization rig. The force regulating nuts are seen more clearly in Figure 4.5 

Finalized Calibration . 

A major hurdle that needed to be overcome was the development of a method of 

consistently applying a static load level to the transducer. The stabilization rig shown in Figure 4.5 

Finalized Calibration  successfully addressed this issue. 



www.manaraa.com

31 
 

 

Figure 4.5 Finalized Calibration Apparatus 

The rig minimizes any unnecessary vibrations during calibration, as well as providing a 

means of applying a constant force to the transducer face. At the bottom of the rig, a Honeywell 

model FSS1500NST force sensor was placed on top of a flat piece of sheet metal. The sheet metal 

serves as a base for the rig, and ensures that the force sensor stays level. The Honeywell force 

sensor is a push button, Wheatstone bridge type, and has a nominal sensitivity of 0.12 mV/gram. 

The base of the transducer case was a rough surface; this is a result of the 3-D printing process. 

The force sensor is very sensitive to surface flatness, therefore a small piece of plexiglass plastic 

was affixed to the bottom of the transducer case. The force sensor exhibited a small decay with 

time in the force readings applied to it, the procedure to account for this decay is detailed later in 

this chapter.  
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Figure 4.6 Frequency Response Curves of Transducerand Figure 4.7 Error Bars of 

Statically Loaded Transducercontain the results of five separate tests in the response of the 

transducer from 20 kHz to 80 kHz. 

 

Figure 4.6 Frequency Response Curves of Transducer Under Static Load 

 

Figure 4.7 Error Bars of Statically Loaded Transducer 

The calibration of the loaded transducer shows significant variation from the frequency 

response of the unloaded transducer, and this response varies as the static load applied to its 
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actuating face is altered. As the load level increases, the total response curve broadens within the 

-40 to -50 decibel range; conversely, as the load decreases, the frequency response approaches the 

shape of the unloaded calibration curve. The loaded response curves presented in Figure 4.6 and 

Figure 4.7 validate the need for the creation of this novel method of calibration for ultrasonic bone 

conducting transducers. As the transducers are, in the future, used for testing on human patients, 

it is imperative that the signal they create are definitively known in order to properly measure the 

levels and types of bone conducted signals a subject perceived.  

4.2 Static Force Calibration 

For the calibration study conducted in section 4.1, a thorough investigation was completed 

to ensure stability with the applied static load. The level of applied load required to correctly mimic 

the loads that the bone conducting transducer would experience in operation is significant. Initial 

testing showed a rapid decrease in the load amount that was sensed by the Honeywell force sensor 

after the peak load level was applied. The exact cause of this decay was not determined; however, 

the decay rate was found as a function of time through experimentation. A possible cause of this 

decay however can be attributed to the RC time constant of the circuit inside of the force transducer 

itself. There is a time constant associated with both charge and discharge of a voltage applied, and 

this is a potential cause of the decay rate of force measured [40]. This rate is shown in Figure 4.8 

and Figure 4.9. Figure 4.8 depicts an entire decay rate measurement of the force sensor, whereas 

Figure 4.9 shows a linearization of the decay rate as time progresses. This linearization allowed 

for easy prediction of the total amount of decay in the level of force read, as well as minimization 

of the force decay experienced as calibration of the transducer took place. Minimizing the load 

variation was key to assuring constant and repeatable calibration attempts.  
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Figure 4.8 Stabilization Rig Calibration Force Decay Rate 

Figure 4.8 depicts the decay rate of the force readings from the Honeywell force sensor. 

The force sensor in this application was supplied a constant 2 Vdc. After adjusting the tightness of 

the four force regulating nuts on to achieve a peak load level, voltage readings were taken from 

the force sensor every fifteen seconds for twenty minutes. Four separate trials showed that the 

force decay rate slowed considerably after the ten-minute mark. Figure 4.9 shows the force 

readings only between ten and twenty minutes for these same trial results.  

 

Figure 4.9 Calibration Force Decay Rate from 10 to 20 Minutes 
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The preceding figures clearly indicate that, with longer settling times after application of 

an initial force load to the transducer, the decay rate slows down and becomes linear. A decay of 

0.5 millivolts over ten minutes, when the sensor is supplied with a constant 2 VDC, is equivalent to 

a 10.4 gram decrease in mass applied to the transducer. With measurements starting at 520 total 

grams applied to the transducer this drop is a 2.04% decrease. The force level that is applied to the 

transducer during ultrasonic bone vibrations by the prestressed metal head band, described in 

Chapter 3.3 is equal to the 5.1 Newtons, which corresponds to the 520 grams of preload. Given 

this information, every calibration procedure completed in chapter 4.1 was made after two 

conditions were met. The first condition was that the load level had reached an equivalent of 520 

grams, and the settling time for the load to reach this level was a minimum of 20 minutes. 
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CHAPTER 5. SURFACE ACOUSTIC WAVE MODELING 

5.1 Introduction 

Surface acoustic wave (SAW) devices are subset of micro electromechanical systems 

(MEMS) that are used for signal processing [41, 42], chemical analysis [43, 44] and biomedical 

applications [19, 45-51] via exciting surface waves on piezoelectric substrates. The substrate is 

stimulated by pairs of conductive thin film interdigital transducers (IDTs) with width and pitch 

that are designed to excite desired frequencies. The waves that propagate on the surface of the 

substrates are confined within a layer under the surface which has a thickness close to one 

wavelength [52]. The superficial character of these waves provides sensitivity to alterations in 

physical quantities such as temperature, strain, and mass changes on the surface of the substrate 

[14,15]. 

Recently, attention has been focused on the modelling of SAW devices via mathematical 

and numerical modelling techniques [14–23]. Numerical techniques include Finite Element 

Method (FEM) [14–19], Finite Difference (FD) [53] and the Boundary Element Method (BEM) 

[21] or a combination of FEM and BEM [22,23]. Among these techniques, FEM is widely used to 

model SAW devices in both 2 and 3 dimensions. Often the SAW devices are limited to models 

only consisting of piezoelectric substrate and IDTs. Generally, the effects resulting from pressure, 

mass or viscosity are overseen in models; however, Atashbar et al. [53] studied a 3-Dimensional 

finite element model of XY-cut LiNbO3 SAW hydrogen sensor with a palladium (Pd) thin film 

developed on the substrate. The insertion loss (IL) and the impulse response of the device were 
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simulated in this work. The effect of exposure was achieved via changing the density and thickness 

of the Pd thin film. 

 Xu [53] presented a direct finite element model for predicting the characteristic response 

of the YZ-cut LiNbO3 SAW filter. In the study, equations of motion that define the mechanical 

behavior are coupled with Maxwell’s equations for electromagnetic behavior, to model the 

propagation of acoustic waves in piezoelectric media. The Rayleigh damping coefficients were 

implemented to reduce the interference of the waves reflected from the boundaries. Fourier 

transform of the impulse response was used to acquire the frequency response of the filter. Ippolito 

et al. [53] reported a 3-Dimensional simulation of a XY-cut LiNbO3 layered SAW device which 

was studied in ANSYS® software package. The SAW device consisted of two IDT pairs in each 

port that were patterned on the surface of the LiNbO3 substrate, i.e. the transmitting and receiving 

ports, and a 3 mm thick ZnO guiding layer. One of the conclusions of this research was that finite 

element modelling packages are effective ways for a deeper understanding of SAW phenomena in 

piezoelectric media. In their finite element analysis study, Abdollahi et al. [19] evaluated the mass 

sensitivity of SAW sensors with various piezoelectric materials i.e. lithium niobate, quartz, lithium 

tantalate and langasite. Similar to earlier research studies, they investigated the impulse response 

and the insertion loss of the SAW filters. In a recent research paper, Gowini and Moussa reported 

a Finite Element Analysis of a SAW Hydrogen Sensor which was modeled using ANSYS®
 [15]. 

The SAW sensor they modeled consisted of a YZ-cut LiNbO3 substrate and a thin palladium film. 

They presented the IL via obtaining the frequency response from the time domain response by 

Fourier transform. 

In this chapter, an investigation of the effect of PDMS channel side wall thicknesses for 

acoustic microfluidic devices via simulating the insertion loss by 3-Dimensional Finite Element 
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Modelling is carried out. The simulation study was carried out in two main steps; first, a calibration 

step of bare 128_ YX-cut LiNbO3 for obtaining the boundary conditions and second, with the PDMS 

channels constructed on the substrate. The PDMS channel side wall thickness was varied between 

2 mm and 8 mm and the  results were compared with experimental results of a prior study. 

5.2 Design Variables 

To mathematically model the wave propagation in piezoelectric solids, mechanical and 

electrical effects have to be taken into account which are governed by equations of motion and 

Maxwell’s Equations, respectively [10, 54-57]. 

The Heckmann Diagram shows the interrelationships between electrical, mechanical, and 

thermal properties of materials. Figure 5.1 is the part of the Heckmann Diagram composed of the 

mechanical and electrical properties. 

 

Figure 5.1 Partial Heckmann Diagram 
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From this diagram, the constitutive equations for the electromechanical effects in 

piezoelectric transducers can be derived in matrix form as 

 𝐷௠ = 𝑒௠௞௟𝑆௞௟ + 𝑒௠௝𝐸௝  (18)

for the direct piezoelectric effect and 

 𝑇௜௝ = 𝑒௠௞௟𝑆௞௟ + 𝑒௠௝𝐸௝ (19)

for the converse piezoelectric effect. Here D is the dielectric displacement (or the polarization), e 

is the piezoelectric stress coefficient, E is the electric field, ɛ is the material’s dielectric constant, 

T is the stress and S is the strain. Using equation (19), one can then write Newton’s Second Law 

of motion as 

 𝜌𝑢̈௜ =
𝜕𝑇௜௝

𝜕𝑧௝
= 𝑐௜௝௞௟

𝜕𝑆௞௟

𝜕𝑧௝
− 𝑒௠௜௝

𝜕𝐸௠

𝜕𝑧௝
 (20)

here, zj is the coordinate component of the particle of interest. With the assumption that there are 

no electrical charges present on the surfaces of the piezoelectric substrate and using equation (18), 

Maxwell’s Equation can be defined by 

 
𝜕𝐷௠

𝜕𝑧௝
= 0 = 𝑒௝௞௟

𝜕𝑆௞௟

𝜕𝑧௝
− 𝑒௠௝

𝜕𝐸௠

𝜕𝑧௝
 (21)

In terms of displacement (uk) and electric potential (f), strain and electric field are given by 

 𝑠௞௟ =
𝜕𝑢௞

𝜕𝑧௟
 (22)

and 

 𝐸௠ = −
𝜕𝜙

𝜕𝑧௠
 (23)

respectively. Substituting Equations (22) and (23) into Equations (20) and (21), we can rewrite the 

equations as 
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 𝜌𝑢̈௜ = 𝑐௜௝௞௟

𝜕ଶ𝑢௞

𝜕𝑧௝𝜕𝑧௟
+ 𝑒௠௜௝

𝜕ଶ𝜙

𝜕𝑧௝𝜕𝑧௠
 (24)

 
𝜕𝐷௠

𝜕𝑧௝
= 0 = 𝑒௝௞௟

𝜕ଶ𝑢௞

𝜕𝑧௝𝜕𝑧௟
+ ℇ௠௝

𝜕ଶ𝜙

𝜕𝑧௝𝜕𝑧௠
 (25)

Considering plane waves in piezoelectric media, the solutions of these equations are 

 𝑢௞ = 𝐴௞exp 𝑖(𝜔𝑡 − 𝑘௜𝑧௜) (26)

and 

 𝜙 = Φexp 𝑖(𝜔𝑡 − 𝑘௜𝑧௜) (27)

where w is the radial frequency, t is time and ki is the wave number. The solutions for equation 

(26) relate to the acoustic waves while the solutions for equation (27) are related to the 

electromagnetic waves [24,25]. 

The substrate material used in this study is 128°YX-cut LiNbO3. Single crystal LiNbO3 

has trigonal symmetry and belongs to the point group 3m. According to Neumann’s principle, any 

physical property of a crystal must include the symmetry elements of the crystal itself. Thus, the 

elastic constants (cij), the piezoelectric stress constants (eij) and the dielectric constants (ɛij) in 

matrix form are given in Figure 5.2. This represents the generalized form of the constants used for 

lithium niobate. When the values in this figure are replaced with the numerical values presented 

in Table 5.1 Property Constants of LiNbO3they must then be transformed to properly represent the 

values for 128°YX-cut LiNbO3. This is completed through the use of Eulerian angles, which allow 

for the creation of the three specific direction cosine matrices needed to transform the properties 

to their proper crystallographic orientation. The Eulerian angles as well as transformations are 

detailed in Figure 5.3 and equations (28) through (30). 



www.manaraa.com

41 
 

 

Figure 5.2 Generalized Piezoelectric Matrices 

Table 5.1 Property Constants of LiNbO3 

Constant Value 
c11 

2.03×10ଵଵ
𝑁

𝑚ଶ
 

c12 
0.573×10ଵଵ

𝑁

𝑚ଶ
 

c13 
0.752×10ଵଵ

𝑁

𝑚ଶ
 

c14 
0.085×10ଵଵ

𝑁

𝑚ଶ
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Table 5.1 Continued 

c33 
2.424×10ଵଵ

𝑁

𝑚ଶ
 

c44 
0.595×10ଵଵ

𝑁

𝑚ଶ
 

e15 
3.7 

𝐶

𝑚ଶ
 

e22 
2.5 

𝐶

𝑚ଶ
 

e31 
0.23 

𝐶

𝑚ଶ
 

e33 
1.33 

𝐶

𝑚ଶ
 

ɛ11 44 

ɛ33 29 

 

As the substrate is 128° YX-cut LiNbO3, the constant matrices must be transformed to the 

orientation of the crystal cut. The Eulerian angles (θ, ϕ, ψ) and the rotations required for the 

transformations are given in Figure 5.3. For the 128° YX-cut LiNbO3 the Eulerian angles are (0°, 

38°,0°). These rotations are completed in three stages, where a primary set of orthogonal axes are 

transformed into a new set of orthogonal axes by creation of one new axis per a stage for each 

Eulerian angle rotation required. In Figure 5.3 this is demonstrated as the original set of axes X Y 

and Z are transformed into a final set of axes through rotations of angels theta, phi, and psi into 

X’’’, Y’’’, and Z’’’. 
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Figure 5.3 Eulerian Angle Rotations 

For obtaining the transformed matrices, one must employ direction cosines (aij; i, j = 1,2,3) 

[53] and use the relations given in equations (28) through (30) as 

 (𝑐ᇱ) = (𝑎)(𝑐)(𝛼) (28)

 (𝑒ᇱ) = (𝑎)(𝑒)(𝛼) (29)

 (ɛᇱ) = (𝑎)(ɛ)(𝛼) (30)

where the transformed property matrices are given with primed letters and (a) and (α) are the 

direction cosine matrix and the transformation matrix, respectively. The transformation matrix is 

directly related to the specific point group of a given crystal geometry. In the case of lithium 

niobate, the point group is 3m, or the trigonal crystalline point group. This point group further 

denoted the amount of transformations necessary for determination of a material property in any 

given direction. Therefore, transformed matrices for elastic, piezoelectric and dielectric constants 

are obtained and shown in their finalized format in Figure 5.4. Here the matrix “c” is in units of 

force per unit area, and matrix “e” is shown in coulombs per unit area, or the amount of electric 

charge per unit area in a substrate caused by the piezoelectric effect.   
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Figure 5.4 LiNbO3 Piezoelectric Matrices 

5.3 Insertion Loss 

Insertion loss is a widely-studied field in acoustics. Insertion loss in microfluidic devices 

can be attributed to two chief sources, intrinsic and extrinsic loss. Intrinsic loss is attributed to 

absorption from molecular vibrations in the piezoelectric substrate. These types of intrinsic losses 

are increased proportionally with the length of the delay line between both in the input and output 

IDTs as shown in Figure 5.5, as well as lesser effects from edge, side, and bottom losses. In this 

finite element analysis study, the attenuation of wave travel in the delay line path of the surface 

acoustic wave device will be the primary focus of insertion loss calculation and simulation. In 

addition to delay line loss, the locations of edge losses, side losses, and bottom losses are depicted 

in Figure 5.5. 
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Figure 5.5 Delay Line, Edge, Size, and Bottom Losses 

Extrinsic losses are caused by interaction of the piezoelectric substrate with foreign 

materials. This includes not only the PDMS channel placed on the wafer, but also the IDT fingers 

deposited on it. Although the IDT fingers are a cause of insertion loss, for this study, only the 

insertion loss from the PDMS is considered.  

5.4 Meshing 

Meshing is a critical aspect of any Finite Element Analysis. Three key points of meshing 

that need to be addressed in any simulation to ensure accuracy and efficiency of a solution are: 

mesh type method, mesh density, and mesh elements utilized.  

The first aspect, mesh type method, refers to the selection between structured and 

unstructured mesh creation. In an unstructured mesh, number and density of mesh elements and 

nodes are decided arbitrarily by an FEA modelling package. Although this simplifies the process 

of mesh creation, it can lead to several errors and inaccuracies in results from creation of stress 

concentrations, and high aspect ratio elements. Aspect ratio is defined as the ratio of the length of 



www.manaraa.com

46 
 

the longest side of a generated mesh element divided by the length of its shortest side. Elements 

with aspect ratios of greater than three are suspect, and with ratios of ten or greater are highly 

probable for non-convergence of simulated solutions. Figure 5.6 demonstrates two and three-

dimensional mesh elements with favorable and non-favorable aspect ratios [58]. 

 

Figure 5.6 Low and High Aspect Ratio Elements [26] 

A structured mesh allows the user complete control of the mesh generation process. This 

ensures high quality of elements generated, and control over the second aspect of meshing, mesh 

density. 

The second aspect that must be considered is mesh density. Increasing mesh density 

minimizes the size of individual mesh elements, which increases the time needed for solution 

computation as well as the computing power necessary to calculate. For this reason, mesh density 

is sometimes used in a gradient, where the mesh density increases as the mesh approaches the area 

of interest of a model. If the growth rate of the mesh density is not carefully considered, higher 



www.manaraa.com

47 
 

aspect ratio elements are generated. For this reason, in this simulation study, the mesh density is 

constant and defined by elements per wavelength. For acoustic analysis, six to ten elements per 

wavelength is recommended [22]. Constant mesh density also allows for the use of hexahedral, or 

brick elements.  

The type of mesh elements used in simulation is dictated by the type of study being 

computed as well as the geometry being studied. Hexahedral elements are the preferable elements 

shape, but their use is limited in situations where a geometry is not easily divided into brick 

elements. Hexahedral elements provide higher accuracy of results when compared to the same 

number of tetrahedral elements, as a result of more nodal points per element. Tetrahedral and 

pyramid shaped elements are useful when increasing a mesh density close to the area of interest 

being studied; however, in this simulation study, a relatively thin substrate allows for the constant 

mesh density throughout its thickness. The simple shape of the piezoelectric substrate simulated 

also lends itself towards a hexahedral mesh.  

5.5 Methods 

The simulation study performed here was completed in multiple steps and was modeled 

after experimental results presented in a previous study [26]. The purpose was to compare the 

insertion loss of an arbitrary signal input across a piezoelectric substrate to varying side wall 

dimensions of a polydimethylsiloxane (PDMS) channel. All simulations were carried out via 

ANSYS® Workbench 15.0 Finite Element Analysis (FEA) software. The study was completed in 

series of six simulations. The first two simulations were calibration of a bare lithium niobate 

wafer’s boundary conditions. The details of the first simulation geometry are illustrated in Figure 

5.7 and Figure 5.8. 
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Figure 5.7 Square End Model Geometry 

The lithium niobate (LiNbO3) wafer depicted in Figure 5.7 is 26 mm long in the x-axis 

direction, 3 mm wide in the z-axis direction, and extruded 0.5 mm thick in the y-axis direction. 

These are shown in Figure 5.8 as the length (L), width (W) and thickness (T), respectively. The 

orientations of SAW devices for different cuts are given in a number of publications[56, 59]. Slices 

were introduced into the geometry to allow for more consistent meshing control. After the slices 

were created, the geometry was then consolidated as one part consisting of 122 separate bodies. 

At either end of the wafer, there is one interdigital transducers (IDTs) which consists of four fingers 

that are 1 mm long (h), 0.075 mm wide (d), and are imprinted directly onto the face of the substrate 

[60-62]. The width of the IDTs was specified as one quarter of the 300-micrometer wavelength (l) 

simulated in the lithium niobate wafer. One of IDTs was meant as an input transducer, and the 

opposing IDT was utilized as a sensing set. The input set of fingers were excited with a pulse input, 

and the sensing fingers were responsible for capturing the signal transmitted across the wafer. The 

pulse input parameters are detailed in equation (31). 
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 𝑉஺ = ቄ
+1𝑉, 𝑡 ≤ 1𝑛𝑠
0𝑉,            𝑡 > 1𝑛𝑠

 (31)

 

Figure 5.8 Schematic View of the SAW Device 

Figure 5.11 illustrates the meshing as well as the location of the actuating IDTs. In this 

figure, the fingers labeled “A” were subjected to the voltage input loading condition in equation 

(31). The fingers not excited under this loading condition were in a constantly grounded state, so 

that two fingers were pulse inputs and two were constantly grounded, these grounded fingers are 

denoted as “B” in the figure. Similarly, at the opposing end of the substrate, the fingers alternate 

between IDTs used for sensing, and IDTs that were constantly grounded. The entire bottom face 

of the wafer had a fixed boundary condition. 
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The meshing parameters for this study were chosen in order to properly characterize 

surface waves excited. Figure 5.9 demonstrates hexahedral element type nodal point placements 

of the mesh type used in this simulation 

 

Figure 5.9 Three Dimensional 20 Node Hexahedral Element [26] 

These mesh elements placed in the delay line path of the piezoelectric substrate had an 

edge length of 75 µm; furthermore, the piezoelectric element type has four degrees of freedom 

(DOF). Respectively these are three displacement DOF, as well as one electric DOF. As each 

hexahedral element contains three nodal points in the direction of wave propagation, nine total 

nodal points characterize the traveling wave, Figure 5.10 demonstrates this. Here A represents a 

surface wave, fixed at both ends, and B represents an undeformed substrate surface. Each nodal 

point is one point of motion on the traveling wave, that is propagating. If the density of nodal 

points along the wave is lower, there is not significant information per wavelength to properly 

characterize a traveling wave, conversely if the density is too high, then there is an abundance of 

nodal points that will increase computational power required, without significantly increasing 

result accuracy.  
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Figure 5.10 Surface Wave Propagation Characterized by 9 Nodal Points 

 

Figure 5.11 First Simulation Meshing and IDT Locations 

Spatial discretization is a critical step in simulation, and the quality of a mesh can be 

analyzed in ANSYSR via mesh statistics. Three key statistics that were recorded in each simulation 

were the skewness, orthogonal quality, and element quality. The ANSYSR guide specifies that a 

skewness of less than 0.25 and on orthogonal quality of 0.95 are considered excellent [27]. The 

average values for skewness and orthogonal for the simulations completed in this study were 

1.83 ×10ିଷ and 0.99, respectively. Element quality of greater than 0.3 is considered good quality, 
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the average element quality for the five simulations in this study was 0.989. Specifying the specific 

mesh types and sizing, as opposed to automatically generating meshes, allowed for creation of 

high quality mesh elements. Temporal discretization is equally as relevant to creating a proper 

simulated event as spatial discretization. To properly characterize a wave created on the 

piezoelectric substrate modeled, equation (32) is utilized. 

 𝑇௩ <
1

20 ∗ 𝑓௠௔௫
 (32)

where Tv is the duration of each time step necessary to characterize a studied frequency of fmax. In 

the case of this simulation the fmax is found from the spacing of the IDT fingers, which gives a 

wavelength of 300 µm. The surface wave velocity of 128o Y-cut X-axis propagating LiNbO3 

substrate is given as 3980 m/s. Thus, the excitation frequency can be calculated as. 

 𝑓 =
𝑣

𝜆
=

3990 𝑚/𝑠

300 µ𝑚
= 13.3 𝑀𝐻𝑧 (33)

This frequency requires a Tv of maximum 3.75 ns. This simulation exceeds that standard 

with time step durations of 3.33 ns. 

 

Figure 5.12 Boundary Conditions for the SAW Device 

The first and second simulations completed in this study were both for bare lithium niobate 

wafers; however, the first simulation was completed for a substrate with a square end and the 

second was completed for a substrate with a rounded end. The first simulation results contained 

excessive noise from wave reflection at the square ends of the substrate. The use of rounded edges 
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to minimize reflection in simulating SAW devices has been shown to account for boundary 

reflection characteristics [28,29]. As illustrated in Figure 5.13, we employed the rounded edge 

wafer strategy to minimize the reflections from the edges. It should be highlighted that in 

experimental studies, the wafer is diced further away from the microfluidic transducer location, 

hence changing the substrate edge will not have significant impact in the application space. With 

the minimization of noise, peak operation frequency of the piezoelectric device can be more clearly 

determined through FFT analysis. These rounded ends are semicircular with a radius of 0.5 mm. 

All boundary conditions in this simulation were identical to the boundary conditions of the square 

end substrate. 

 

Figure 5.13 Improved Simulation with with Rounded End Substrate 

After the rounded edge model was selected, PDMS channels were constructed on the top 

face of each substrate simulated, Figure 5.14. The PDMS was modeled as sylgard 184 with a 

density of 1.03 
௞௚

௠య
 and a Young’s modulus of 1.32 MPa [63]. The PDMS channels were modeled 

with the same mesh density as the piezoelectric substrate. A total of four simulation variations 

were completed, with each containing a varying PDMS side wall channel thickness. These were 

then compared to the insertion loss of the bare lithium niobate wafer for relative insertion loss 
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differences, and then compared to experimental data to study the accuracy of the results. The 

PDMS side wall channels were simulated at eight millimeter, six millimeter, four millimeter, and 

two millimeter thicknesses. All varying simulations of the side wall thickness had a constant top 

wall thickness of eight millimeter. Each simulation was run with consistent boundary conditions 

and voltage inputs. For reference, geometries of each PDMS channel are shown in Figure 10. This 

figure overlays all four different channel dimensions. The PDMS channels were specified as a 

separate body from the actual piezoelectric substrate, and subsequently modeled with a “bonded” 

condition through the ANSYSR contact selection to the substrate. The bonded condition mimics 

the plasma etching that is used to bond PDMS channels to substrates during experimentation. 

 

Figure 5.14 Schematic Side View of SAW Device with PDMS 

 

Figure 5.15 Side View of Varying PDMS Channel Dimensions 
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The insertion loss levels were calculated in dB through a custom MATLAB file, which 

utilized formula (34). 

 𝐼𝐿 = 10 logଵ଴ ൬
𝑃௢௨௧

𝑃௜௡
൰ (34)

The goal of this procedure was to determine the relative decibel (dB) drop directly 

associated with variation of the PDMS channel sidewall thickness. Figure 5.16 shows the 

components and boundary conditions of the simulations with PDMS channels, where A and B are 

the location of the input IDTs, and C is the PDMS channel. 

 

Figure 5.16 Top View of Substrate and Load IDTs 

5.6 Results and Discussion 

The results of the simulation show the total insertion loss of the bare lithium niobate 

substrate compared with the insertion losses of four PDMS channels at constant eight mm top wall 

thickness and four varying side wall thicknesses. In each simulation, the microfluidic channel 
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contains no liquid. These results are presented in Figure 5.17 and Figure 5.18. Figure 5.17 shows 

a frequency response spectrum from 7.7 MHz to 22 MHz. Figure 5.18 shows only the insertion 

loss for the operational frequency of the piezoelectric devices. The operation frequency peak found 

for all simulated cases was 13.3 MHz. The largest difference, 11.52 dB, in insertion loss exists 

between the bare wafer and wafer with eight mm side wall channel. 

 

Figure 5.17 Insertion Loss Spectrums for Varying PDMS Channels 

 

Figure 5.18 Insertion Loss for Varying PDMS Channels at Operation Frequency 

Lastly, Table 5.2 compares the relative insertion losses calculated in simulation compared 

to experimental insertion losses at peak frequency responses for the piezoelectric substrates. The 

experimental data referenced in this comparison is from previously published work [64]. 
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Table 5.2 Insertion Loss at Resonant f Relative to No Channel in Decibels 

 Simulation Δ IL Experimental Δ IL 

 8 mm -11.52 -10.11 

6 mm -6.28 -6.58 

4 mm -4.41 -2.39 

2 mm -3.21 -0.82 

 

For the results presented here, the effects of bulk acoustic wave action and electric field 

outside of the substrate are assumed to be negligible. The experimental versus simulated results 

show that as the PDMS channel side wall thicknesses increases, the relative insertion loss 

increases, which is expected. Also as the sidewall thickness is increased, the results between the 

simulated and experimental insertion loss converge. A paired t-test run between each individual 

IL levels calculated, shows that on average there is a p-value of 0.035, demonstrates statistically 

significant data. Any impedance in the delay line path of a piezo electric device will create an 

insertion loss; however, there is a nonlinear change in insertion loss levels found with varying side 

wall channel thicknesses. This nonlinear change can be attributed to the SAW interaction with the 

viscoelastic PDMS material. There is an exponential leakage of the SAW wave as it interacts with 

the surface of the PDMS, which dictates that the insertion loss levels of a given piezoelectric device 

is greatly improved by monitoring the PDMS channel dimensions. Although the thinnest side wall 

channel dimensions should be employed, it is shown by simulation, and confirmed by 

experimentation, that the relatively small difference between a two and four-millimeter side wall 

channel IL allows for flexibility of PDMS channel dimensions in that range. 
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The variation that does exist between the experimental and simulated data can be attributed 

to a few sources. Firstly, the simulated geometry was different than the experimented geometry. 

The largest geometry differences were the number of IDT fingers simulated, as well as the length 

of these fingers. Altering the scale of the simulated geometry to come closer to the experimental 

geometry exponentially increases both the time necessary for the simulation to complete, as well 

as the total computational power needed to run the simulation. Secondly, the relative dB loss values 

are calculated from the case where there is no PDMS channel on the substrate, this bare wafer is 

the zero dB baseline. Any changes in this baseline, experimentally or in the simulation, shifts the 

values of the insertion losses for the remaining four varying PDMS channels. Finally, error and 

variation in the original experimentation will affect how closely the simulated data matches the 

experimental data. In the simulation case, if all the boundary conditions and meshing parameters 

are mirrored, the results calculated are the same; however, with experimentation it is impossible 

to consistently acquire the exact same results. Repetition of the original experimentation will shift 

not only the baseline zero dB measurement, but also all of the PDMS channel insertion loss 

measurements. This consequently effects the matching of the experimental and simulated data. 

Furthermore, there is a nonlinear relationship between the power load applied to a piezoelectric 

device, and it’s output electrical field created. This can also effect the total level of insertion loss 

calculated through simulation, as the voltage input in experimentation was much higher than the 

voltage input level simulated in this study. 

5.7 Conclusion 

In this study, the effect of varying PDMS channel side wall thicknesses on insertion loss 

of a LiNbO3 substrate was simulated via ANSYS® Workbench 15.0 Finite Element Analysis 

software. The results show a clear trend of decreasing insertion loss levels, when compared to a 
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bare substrate, as the side wall thicknesses are varied from eight to two millimeters. The six-

millimeter reduction of the simulated sidewall thickness resulted in a net decrease of 8.31 dB of 

insertion loss. These results further show that as the sidewall thickness increased, there was a 

converging of simulated and previously published experimental data. The ability to replicate 

experimental data through simulation, by rigorous attention to boundary conditions and input 

parameters, is a necessary step for creating trustworthy models that can be used for predictive 

analysis. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

6.1 Summary  

This dissertation is comprised of work from two studies. The first is the calibration of an 

ultrasonic transducer, for use in bone conduction audiological studies. The second study is the 

simulation of insertion loss levels of a piezoelectric substrate with varying PDMS channels. Both 

studies find their roots in the field of acoustics.  

In the first study, the calibration of an ultrasonic transducer, the free response of a 

transducer was compared with the calibration of the same transducer when placed under a static 

loading condition. This static loading condition mimicked the operation condition of the transducer 

in an audiological application. Previous studies have been performed for the same topic; however, 

these studies only aimed to calibrate the sound pressure levels of transducers being employed. 

These studies were more focused on the hearing perception of subjects that were exposed to these 

transducers. To this end, this dissertation created a novel method which compared the free response 

and statically loaded transducer. It was found that the static loading dampened the response of the 

transducer, but had the dual effect of broadening its response. This can be attributed to the static 

load modifying the at-rest conditions of the piezoelectric element in the transducer. Piezoelectric 

elements are characterized by mechanical and electrical stimuli causing shifts in their non-

centrosymmetric crystalline structure. If the static condition of the piezo element is modified by 

the introduction of a load, it can be understood that its response to a stimulus would be similarly 

affected. For use in audiological purposes, this is a desired consequence of placing the transducer 
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under load. This allows for one transducer to be used for ultrasonic testing in a broader frequency 

spectrum.  

The second study is simulation of insertion loss levels on varying PDMS channel side wall 

dimensions. This study was completed and compared to previously gathered and published 

experimental data. It was found that the simulated data experienced increased levels of insertion 

loss as the PDMS side wall channel thicknesses increased from two to eight millimeters. This was 

in agreement with the trend experienced in experimental data; furthermore, it was shown that as 

the simulated thicknesses of side wall channels were increased, there was a closer agreement 

between the two sets of data. The contribution of this portion of the dissertation was the bottom 

up creation of a reliable surface acoustic wave simulation in three dimensions. Simulated work to 

date regularly is done in two dimensions to simplify calculations, or often with prepackaged 

material library data for different piezoelectric substrates. Use of prepackaged material data is 

acceptable in most circumstances, however, it limits the user to a defined library of materials. 

When a piezoelectric crystal is cut in different planes and angle orientations, there is a shift in its 

properties. This creates the need to successfully recalculate its properties in order to properly 

simulate its response.  

6.2 Future Work  

The ultrasonic transducer calibration method includes gathering data on the amount of 

dampening that is experienced in transducer output in relation to the level of static load that is 

applied to its actuating face. With repeated experimentation of varying transducers, it can be 

determined if there is an equation that can relate these two variables within a certain level of 

accuracy. Further, improvements can be made on the stabilization rig that was created for the 
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calibration procedure. These improvements should eliminate any residual vibration created during 

calibration.  

In the simulation study performed, future work will include creation of a coupled fluid flow 

and transient structure simulation. The fluid flow will be introduced with particle tracking in order 

to study the separation mechanics that take place inside the microfluidic channel as it is subjected 

to vibrations from the piezoelectric substrate. This result will then be compared to piezoelectric 

particle simulation experimental data already performed. The aim of further validation should be 

to create a simulation that can be used for the purposes of predictive analysis, rather than only 

study of already completed experimental work. 
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